Publikationen

Preprints

García Alanis, J. C., Strelow, A. E., Dort, M., Christiansen, H., Pinquart, M., & Panitz, C. (2022). Expectation violations, expectation change, and expectation persistence: The scientific landscape as revealed by bibliometric network analyses. PsyArXiv. https://doi.org/10.31234/osf.io/73f52

Löffler, C., Frischkorn, G. T., Hagemann, D., Sadus, K., & Schubert, A.-L. (2022). The common factor of executive functions measures nothing but speed of information uptake. PsyArXiv. https://doi.org/10.31234/osf.io/xvdyz

Nebe, S., Reutter, M., Baker, D. H., Bölte, J., Domes, G., Gamer, M., … Feld, G. (2023,). Enhancing Precision in Human Neuroscience. PsyArXiv. https://doi.org/10.31234/osf.io/m8c4k

Sadus, K., Schubert, A., Löffler, C., & Hagemann, D. (2023). A multiverse study for extracting differences in P3 latencies between young and old adults. PsyArXiv. https://doi.org/10.31234/osf.io/pfza5

Schönbrodt, F., Gärtner, A., Frank, M., Gollwitzer, M., Ihle, M., Mischkowski, D., Phan, L. V., Schmitt, M., Scheel, A. M., Schubert, A.-L., Steinberg, U., & Leising, D. (2022). Responsible Research Assessment I: Implementing DORA for hiring and promotion in psychology. PsyArXiv. https://doi.org/10.31234/osf.io/rgh5b

Schubert, A.-L., Löffler, C., Sadus, K., Göttmann, J., Hein, J., Schröer, P., Teuber, A., & Hagemann, D. (2022). Working memory load affects intelligence test performance by reducing the strength of relational item bindings and impairing the filtering of irrelevant information. PsyArXiv. https://doi.org/10.31234/osf.io/8nm4s

2022

Dordevic, M., Hoelzer, S., Russo, A., García Alanis, J. C., & Müller, N. G. (2022). The Role of the Precuneus in Human Spatial Updating in a Real Environment Setting—A cTBS Study. Life, 12(8), 1239. https://doi.org/10.3390/life12081239
    Frischkorn, G. T., Hilger, K., Kretzschmar, A., & Schubert, A.-L. (2022). Intelligenzdiagnostik der Zukunft: Ein Plädoyer für eine prozessorientierte und biologisch inspirierte Intelligenzmessung. Psychologische Rundschau, 73(3), 173-189. https://doi.org/10.1026/0033-3042/a000598
      Hilger, K., Spinath, F. M., Troche, S., & Schubert, A.-L. (2022). The biological basis of intelligence: Benchmark findings. Intelligence, 93, 101665. https://doi.org/10.1016/j.intell.2022.101665
        Löffler, C., Frischkorn, G. T., Rummel, J., Hagemann, D., & Schubert, A.-L. (2022). Do attentional lapses account for the worst performance rule? Journal of Intelligence,10(1), 2. https://dx.doi.org/10.3390/jintelligence10010002
          Mirman, D., Scheel, A. M., Schubert, A.-L., & McIntosh, R. D. (2022). Strengthening derivation chains in cognitive neuroscience: A special issue of Cortex. Cortex, 146, A1–A4. https://doi.org/10.1016/j.cortex.2021.12.002
            Radeck, L., Paech, B., Kramer-Gmeiner, F., Wettstein, M., Wahl, H.-W., Schubert, A.-L., & Sperling, U. (2022). Understanding IT-related Well-being, Aging and Health Needs of Older Adults with Crowd-Requirements Engineering. 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW), 57–64. https://doi.org/10.1109/REW56159.2022.00018
              Sadus, K., Göttmann, J., & Schubert, A.-L. (2022). Predictors of stockpiling behavior during the COVID-19 pandemic in Germany. Journal of Public Health. https://doi.org/10.1007/s10389-022-01727-x
                Schubert, A.-L., Löffler, C., & Hagemann, D. (2022). A Neurocognitive Psychometrics Account of Individual Differences in Attentional Control. Journal of Experimental Psychology: General, 151(9), 2060-2082. https://doi.org/10.1037/xge0001184
                  Schubert, A.-L., Löffler, C., Hagemann, D., & Sadus, K. (2022). How Robust is the Relationship between Neural Processing Speed and Cognitive Abilities? Psychophysiology, e14165. https://doi.org/10.1111/psyp.14165
                    Thome, I., García Alanis, J. C., Volk, J., Vogelbacher, C., Steinsträter, O., & Jansen, A. (2022). Let’s face it: The lateralization of the face perception network as measured with fMRI is not clearly right dominant. NeuroImage, 263, 119587. https://doi.org/10.1016/j.neuroimage.2022.119587

                    2021

                    Euler, M. J., & Schubert, A.-L. (2021). Recent developments, current challenges, and future directions in electrophysiological approaches to studying intelligence. Intelligence, 88, 101569. https://doi.org/10.1016/j.intell.2021.101569
                      Jungeblut, H. M., Hagemann, D., Löffler, C., & Schubert, A.-L. (2021). An Investigation of the Slope Parameters of Reaction Times and P3 Latencies in the Sternberg Memory Scanning Task – A Fixed-Links Model Approach. Journal of Cognition, 4(1), 26. https://doi.org/10.5334/joc.158

                        Rummel, J., Hagemann, D., Steindorf, L., & Schubert, A.-L. (2021). How consistent is mind wandering across situations and tasks?—A latent state–trait analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. https://doi.org/10.1037/xlm0001041

                        Schubert, A.-L., Ferreira, M. B., Mata, A., & Riemenschneider, B. (2021). A diffusion model analysis of belief bias: Different cognitive mechanisms explain how cognitive abilities and thinking styles contribute to conflict resolution in reasoning. Cognition, 211, 104629. https://doi.org/10.1016/j.cognition.2021.104629

                        Schubert, A.-L., Hagemann, D., & Göttmann, J. (2021). Do individual effects reflect quantitative or qualitative differences in cognition? Journal of Cognition, 4(1), 50. http://doi.org/10.5334/joc.171

                        Schubert, A.-L., Hagemann, D., Löffler, C., Rummel, J., & Arnau, S. (2021). A chronometric model of the relationship between frontal midline theta functional connectivity and human intelligence. Journal of Experimental Psychology. General, 150(1), 1–22. https://doi.org/10.1037/xge0000865

                        2020

                        Arnau, S., Löffler, C., Rummel, J., Hagemann, D., Wascher, E., & Schubert, A.-L. (2020). Inter-trial alpha power indicates mind wandering. Psychophysiology, 57(6), e13581. https://doi.org/10.1111/psyp.13581
                          Klatt, L.-I., Schneider, D., Schubert, A.-L., Hanenberg, C., Lewald, J., Wascher, E., & Getzmann, S. (2020).
                          Unraveling the relation between eeg correlates of attentional orienting and sound localization performance: A diffusion model approach. Journal of Cognitive Neuroscience, 32(5), 945–962. https://doi.org/10.1162/jocn_a_01525
                            Lerche, V., von Krause, M., Voss, A., Frischkorn, G. T., Schubert, A.-L., & Hagemann, D. (2020). Diffusion modeling and intelligence: Drift rates show both domain-general and domain-specific relations with intelligence. Journal of Experimental Psychology. General, 149(12), 2207–2249. https://doi.org/10.1037/xge0000774
                              Schubert, A.-L., & Frischkorn, G. T. (2020). Neurocognitive psychometrics of intelligence: How measurement advancements unveiled the role of mental speed in intelligence differences: Current Directions in Psychological Science, 29(2), 140–146. https://doi.org/10.1177/0963721419896365
                                Schubert, A.-L., Frischkorn, G. T., & Rummel, J. (2020). The validity of the online thought-probing procedure of mind wandering is not threatened by variations of probe rate and probe framing. Psychological Research, 84(7), 1846–1856. https://doi.org/10.1007/s00426-019-01194-2
                                  Schubert, A.-L., Hagemann, D., Löffler, C., & Frischkorn, G. T. (2020). Disentangling the Effects of Processing Speed on the Association between Age Differences and Fluid Intelligence. Journal of Intelligence, 8(1), 1. https://doi.org/10.3390/jintelligence8010001
                                    von Krause, M., Lerche, V., Schubert, A.-L., & Voss, A. (2020). Do Non-Decision Times Mediate the Association between Age and Intelligence across Different Content and Process Domains? Journal of Intelligence, 8(3), 33. https://doi.org/10.3390/jintelligence8030033

                                    2019

                                    Frischkorn, G. T., Schubert, A.-L., & Hagemann, D. (2019). Processing speed, working memory, and executive functions: Independent or inter-related predictors of general intelligence. Intelligence, 75, 95–110. https://doi.org/10.1016/j.intell.2019.05.003
                                      Schubert, A.-L. (2019). A meta-analysis of the worst performance rule. Intelligence, 73, 88–100. https://doi.org/10.1016/j.intell.2019.02.003
                                        Schubert, A.-L., Nunez, M. D., Hagemann, D., & Vandekerckhove, J. (2019). Individual differences in cortical processing speed predict cognitive abilities: A model-based cognitive neuroscience account. Computational Brain & Behavior, 2(2), 64–84. https://doi.org/10.1007/s42113-018-0021-5
                                          Schubert, A.-L., & Rey-Mermet, A. (2019). Does process overlap theory replace the issues of general intelligence with the issues of attentional control? Journal of Applied Research in Memory and Cognition, 8(3), 277–283. https://doi.org/10.1016/j.jarmac.2019.06.004

                                          2018

                                          Frischkorn, G. T., & Schubert, A.-L. (2018). Cognitive models in intelligence research: Advantages and recommendations for their application. Journal of Intelligence, 6(3), 34. https://doi.org/10.3390/jintelligence6030034
                                            Klotz, A.-L., Tauber, B., Schubert, A.-L., Hassel, A. J., Schröder, J., Wahl, H.-W., Rammelsberg, P., & Zenthöfer, A. (2018). Oral health-related quality of life as a predictor of subjective well-being among older adults—A decade-long longitudinal cohort study. Community Dentistry and Oral Epidemiology, 46(6), 631–638. https://doi.org/10.1111/cdoe.12416
                                              Schubert, A.-L., Hagemann, D., Frischkorn, G. T., & Herpertz, S. C. (2018). Faster, but not smarter: An experimental analysis of the relationship between mental speed and mental abilities. Intelligence, 71, 66–75. https://doi.org/10.1016/j.intell.2018.10.005
                                                Zähringer, J., Falquez, R., Schubert, A.-L., Nees, F., & Barnow, S. (2018). Neural correlates of reappraisal considering working memory capacity and cognitive flexibility. Brain Imaging and Behavior, 12(6), 1529–1543. https://doi.org/10.1007/s11682-017-9788-6

                                                2017

                                                Schubert, A.-L., Hagemann, D., & Frischkorn, G. T. (2017). Is general intelligence little more than the speed of higher-order processing? Journal of Experimental Psychology. General, 146(10), 1498–1512. https://doi.org/10.1037/xge0000325

                                                  Schubert, A.-L., Hagemann, D., Voss, A., & Bergmann, K. (2017). Evaluating the model fit of diffusion models with the root mean square error of approximation. Journal of Mathematical Psychology, 77, 29–45. https://doi.org/10.1016/j.jmp.2016.08.004

                                                  2016

                                                  Bergmann, K., Schubert, A.-L., Hagemann, D., & Schankin, A. (2016). Age-related differences in the P3 amplitude in change blindness. Psychological Research, 80(4), 660–676. https://doi.org/10.1007/s00426-015-0669-6

                                                    Frischkorn, G. T., Schubert, A.-L., Neubauer, A. B., & Hagemann, D. (2016). The Worst Performance Rule as Moderation: New Methods for Worst Performance Analysis. Journal of Intelligence, 4(3), 3. https://doi.org/10.3390/jintelligence4030009

                                                      Schankin, A., Bergmann, K., Schubert, A.-L., & Hagemann, D. (2016). The allocation of attention in change detection and change blindness. Journal of Psychophysiology, 31(3), 94–106. https://doi.org/10.1027/0269-8803/a000172

                                                        Schubert, A.-L., Frischkorn, G. T., Hagemann, D., & Voss, A. (2016). Trait characteristics of diffusion model parameters. Journal of Intelligence, 4(3), 7. https://doi.org/10.3390/jintelligence4030007

                                                          Schubert, A.-L., Hagemann, D., Voss, A., Schankin, A., & Bergmann, K. (2015). Decomposing the relationship between mental speed and mental abilities. Intelligence, 51, 28–46. https://doi.org/10.1016/j.intell.2015.05.002

                                                          2015

                                                          Mata, A., Schubert, A.-L., & B. Ferreira, M. (2014). The role of language comprehension in reasoning: How “good-enough” representations induce biases. Cognition, 133(2), 457–463. https://doi.org/10.1016/j.cognition.2014.07.011